
Large-scale Subspace Clustering by Fast Regression Coding

Jun Li1, Handong Zhao1, Zhiqiang Tao1, and Yun Fu1,2

1Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
2College of Computer and Information Science, Northeastern University, Boston, MA, 02115, USA.

junl.mldl@gmail.com, {hdzhao,zqtao,yunfu}@ece.neu.edu

Abstract
Large-Scale Subspace Clustering (LSSC) is an inter-
esting and important problem in big data era. How-
ever, most existing methods (i.e., sparse or low-rank
subspace clustering) cannot be directly used for solv-
ing LSSC because they suffer from the high time
complexity-quadratic or cubic in n (the number of
data points). To overcome this limitation, we pro-
pose a Fast Regression Coding (FRC) to optimize
regression codes, and simultaneously train a non-
linear function to approximate the codes. By using
FRC, we develop an efficient Regression Coding
Clustering (RCC) framework to solve the LSSC
problem. It consists of sampling, FRC and clus-
tering. RCC randomly samples a small number of
data points, quickly calculates the codes of all data
points by using the non-linear function learned from
FRC, and employs a large-scale spectral clustering
method to cluster the codes. Besides, we provide a
theorem guarantee that the non-linear function has a
first-order approximation ability and a group effect.
The theorem manifests that the codes are easily used
to construct a dividable similarity graph. Compared
with the state-of-the-art LSSC methods, our mod-
el achieves better clustering results in large-scale
datasets.

1 Introduction
Subspace clustering, as a fundamental problem, has at-
tracted much attention due to its success in the data min-
ing [Zhao and Fu, 2015a] and computer vision, e.g. im-
age clustering [Lu et al., 2012; Li et al., 2017a], and seg-
mentation of images, video and motion [Liu et al., 2013;
Zhao and Fu, 2015b]. The classical subspace clustering meth-
ods, such as sparse subspace clustering (SSC) [Elhamifar and
Vidal, 2013], low-rank representation (LRR) [Liu et al., 2013;
Xiao et al., 2014; Zhang et al., 2015; Lee et al., 2015] and
least squares regression (LSR) [Lu et al., 2012] are based on
self-expressiveness (SE) property, which states that each data
point in a union of subspaces can be efficiently represented as
a linear or affine combination of other points [Elhamifar and
Vidal, 2013]. These methods have already provided theoreti-
cal guarantees to recover the subspace representations (codes),

and shown the state-of-the-art performances on small datasets.
As data (e.g. image, video, and gene) grow rapidly [Liu et
al., 2007], subspace clustering (LSSC) with large number of
data points becomes an important challenging problem, called
Large-Scale Subspace Clustering (LSSC), which is formally
defined as follow:

Definition 1 (Large-scale Subspace Clustering (LSSC)).
Given a set of data vectors X =

[
X1, · · · ,Xi, · · · ,Xk

]
∈

Rd×n, where d is the feature dimension, k is the number of
subspaces, Xi =

[
xi1, · · · , xij , · · · , xini

]
∈ Rd×ni is drawn

from the i-th subspace Si, ni is the number of data points
of Si, and

∑k
i=1 ni = n. Moreover, r � d � n, where

r =
∑k

i=1 ri, and ri is the number of the bases of Si. The task
is to segment the large-scale data according to the underlying
subspaces they are drawn from.

However, the traditional subspace clustering methods can-
not well handle the LSSC problem because of the following
limitations. First, the high time cost results in that these meth-
ods (e.g. SSC, LRR and LSR) are impossible to solve the
LSSC problem. According to the SE property, the coding
methods usually first select the whole data points as a dictio-
nary to learn the sparse, low-rank and regression codes, and
then employ Normalized Cuts (NCuts) [Shi and Malik, 2000]
to segment the codes for the clustering tasks. Unfortunately,
these reasonable methods generally employ an iterative opti-
mization manner to learn the sparse/low-rank codes, which
suffers from a high time complexity-quadratic or cubic in n
(the number of data points) [Wang et al., 2014]. Thus, existing
coding-based methods are difficult to directly apply for LSSC.

Second, it is difficult to classify data points by a linear
classifier in the sampling-clustering-classification (S-C-C) s-
trategy [Peng et al., 2016; Wang et al., 2014]. The key of
S-C-C uses a small number of data points sampled from the
large-scale data points to preform subspace clustering by the
coding-based methods (e.g. SSC, LRR and LSR), and learn a
linear classifier for the LSSC problem by the clustering results.
Clearly, the final clustering results heavily depend on the clas-
sifier. However, the linear classifier is difficult to classify the
complex data points [Bengio et al., 2013]. Therefore, S-C-C
is not suitable for LSSC.

To overcome the time limitation, we propose a Fast Re-
gression Coding (FRC) algorithm which directly trains a non-
linear function to approximate regression codes learned from

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2138



Figure 1: Regression coding clustering framework.

LSR. This function can quickly compute the codes. Based
on FRC, we build an efficient Regression Coding Clustering
(RCC) framework to solve the LSSC problem. As shown
in Fig 1, RCC mainly consists of three steps. (1) To re-
duce the data size, we randomly sample a small data matrix
Y ∈ Rd×m(r < m � n) from X. (2) The sampled data
points are used to train a non-linear function by FRC, and
codes of all data points can be quickly calculated by this func-
tion. (3) The large-scale spectral clustering (LSSpC) method,
such as landmark-based spectral clustering (LSC) [Chen and
Cai, 2011; Cai and Chen, 2015], is employed to cluster the
non-linear codes, which only needs O(n) time. The major
contributions of this paper are two-fold.

1. We propose a fast regression coding (FRC) to quickly
compute the codes of large-scale data points. We prove
that FRC has a grouping effect that tends to group highly
correlated data together.

2. By using FRC, we develop an efficient RCC framework:
sampling, FRC and LSSpC to solve the LSSC problem.
Moreover, the complexity of RCC is O(n).

2 Related Works
The subspace clustering methods have shown excellent per-
formance in many real-world applications (also see [Vidal,
2011] for a review). In this section, we mainly review the
classical coding (CCod) methods, and the large-scale spectral
clustering (LSSpC) methods.

CCod usually selected the observed data matrix X itself as
the dictionary in the independent and disjoint subspaces, such
as LSR [Lu et al., 2012], SSC [Elhamifar and Vidal, 2013],
and LRR [Liu et al., 2013]. However, this leads to the fact that
the coding methods are difficult to compute the codes for the
LSSC problems because they spend a lot of time to optimize
the codes. In addition, many improved coding methods are
proposed in the literatures, such as structured sparse subspace
clustering [Li and Vidal, 2015], divide-factor-combine LRR
[Talwalkar et al., 2013], and Laplacian regularized LRR [Yin
et al., 2016]. However, they are still difficult to solve the LSSC
problem due to the expensive inference time. Compared to
CCod, our method (FRC) can quickly calculate the codes by
using a non-linear projection function.

LSSpC can be roughly divided into two main ways. The
first way is to reduce the computational cost of eigen-
decomposition over the Laplacian matrix, such as the Nyström
method for the approximate eigenvectors [Fowlkes et al.,
2004], and parallel eigenvalue computations in distributed
systems [Chen et al., 2011]. The second way is to reduce the
data size by selecting a small number of samples to replace
the original data, for example, k-means methods [Yan et al.,
2009], the out-of-sample data [Nie et al., 2011], and LSC
[Cai and Chen, 2015]. Although those LSSpC algorithms can

solve the LSSC problem, they will lead to poor results as the
complex data structure easily results in an indivisible affinity
matrix. Compared to LSSpC, our method fast computes the
divisible codes, and preform clustering by LSC.

3 Regression Coding Clustering (RCC)
In this section, we develop an efficient Regression Coding
Clustering (RCC) framework, which consists of sampling, FR-
C and LSSpC, to largely cluster a collection of multi-subspace
data. Specifically, we formulate a fast regression coding (FRC)
model to learn the non-linear function, and then adopt an ana-
lytical method and a gradient descent algorithm to solve the
FRC model. The landmark-based spectral clustering (LSC)
[Cai and Chen, 2015] is used to fast segment the codes of all
data points computed by the function. Finally, we provide
some theoretical guarantees to show that FRC recovers the
subspace representations (codes) effectively.

3.1 Problem Formulation.
To address the LSSC problem in Definition 1, we reduce
the data size by selecting a small data matrix Yi ∈ Rd×mi

drawn from the data matrix Xi ∈ Rd×ni in the ith subspace
Si (1 ≤ i ≤ k), where mi is the number of the samples of Yi,
and ri < mi � ni. Then Y =

[
Y1, · · · ,Yi, · · · ,Yk

]
(m =∑k

i=1mi) is used as a small dictionary, and r =
∑k

i=1 ri <

m =
∑k

i=1mi � n =
∑k

i=1 ni. In order to show the
fast coding ability of the small data matrix Y, we extend
the SE property [Elhamifar and Vidal, 2013] to a fast self-
expressiveness property, which is formally defined as:

Definition 2 (Fast Self-Expressiveness (FSE) Property).
For the large-scale data matrix X ∈ Rd×n, there exists a
non-linear function f(·; θ) ∈ Rm×n such that X = Yf(X; θ),
where a small data matrix Y ∈ Rd×m is drawn from X, and
the parameter θ is learned from the following system:

Y = YZ, Z = f(Y; θ). (1)

Remark 1: In general, the traditional coding methods con-
sider Zii = 0 which aims to avoid the self-representation [Lu
et al., 2012; Elhamifar and Vidal, 2013]. However, we use
Y as a self-expressive dictionary to learn the projective func-
tion to compute the representations of the large data matrix X.
Thus, Zii = 0 is not restricted in (1).

To fast train the non-linear function to approximate the
codes, we exploit a three-layer neural networks (NN) as:

Z = f(Y; θ) = W2g(W1Y), (2)

where g(·) is a nonlinear activation function (that is also a
element-wise transformation), W1 ∈ Rh×d and W2 ∈ Rm×h

are the projective weights, h is the number of hidden units.
In this paper we mainly consider the tanh activation function
f(a) = (ea−e−a)/(ea+e−a), while other nonlinearities (i.e.,
sigmoid f(a) = 1/(1 + e−a), rectified linear unit max(0, a),
and rectifier piecewise linear units [Li et al., 2017b]) can also
be used.

The Frobenius norm ‖Z‖2F in LSR has the power to capture
the strong correlations in the same subspace, and does not take
more time to carry out many iterations for convergence [Lu

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2139



et al., 2012]. Moreover, it is used to control the over-fitting
problem. To replace f(Y; θ) by (2), therefore, we propose a
FRC model defined as:

min
Z,W1,W2

‖Z‖2F s.t. Y = YZ, Z = W2g(W1Y). (3)

In addition, data are often corrupted by noise due to mea-
surement/process noise and collection techniques in real-world
problems [Liu et al., 2013; Elhamifar and Vidal, 2013], for
example, the small and independent and identically distribut-
ed (i.i.d.) Gaussian noise. In general, the Frobenius norm
is used to measure the quality of approximation for fitting
the Gaussian noise [Elhamifar and Vidal, 2013]. By using
the Frobenius norm to penalize the noise, the problem (3) is
written as the following optimization:

min
Z,W1,W2

‖Y− YZ‖2F + α ‖Z‖2F (4)

s.t. Z = W2g(W1Y),

where α is a parameter to balance the effects of two terms.
Remark 2: In fact, when Y is selected as the dictionary,

LSR also can be considered as the following problem:

C? = argmin ‖C‖2F s.t. X = YC. (5)

Usually, it has a solution C? = (YT Y + αI)−1YT X, where
α is a regularization parameter. Clearly, this solution is
a linear function. However, the linear projection is very
limited for clustering tasks as they cannot extract more ab-
stract and non-linear representations [Bengio et al., 2013;
Li et al., 2017b]. Therefore, we train a non-linear function (2)
to approximate the codes. The approximate accuracy will be
studied in subsection 3.4. Moreover, the empirical evidence in
Table 6 shows that our non-linear model is better than LSR.

3.2 Optimization.
The problem (4) is non-convex due to the nonlinear func-
tion g(·) in NN (2). Fortunately, NN with the suitable num-
ber1 of hidden units can approximate any continuous function
[Haykin, 2009]. Then the problem (4) can be written as:

min
Z,W1,W2

L = ‖Y− YZ‖2F + α ‖Z‖2F

+ β ‖Z−W2g(W1Y)‖2F , (6)
where β is a regularization parameter. The problem (6) is
solved by iteratively updating the variable Z, and the weights
{W1,W2}. Thus, we first adopt the ridge regression [Hoerl
and Kennard, 2000] to solve Z, and then use a gradient de-
scent algorithm to train {W1,W2} to approximate Z. The
iteration will lead to be time consuming because it needs to
train {W1,W2} many times after each updating Z. Clearly,
the high time cost is not beneficial to LSSC. Therefore, to
avoid the iterative time cost, we use the ridge regression to
solve Z without the last term of (6). The scheme is as follows:

Computing Z: Z is calculated by minimizing L without
the last term of (6). By removing the last term, the problem
(6) is written as the following subproblem:

min
Z
LZ = ‖Y− YZ‖2F + α ‖Z‖2F . (7)

1The number of hidden units h is selected by depending on the
approximating accuracy between Z and W2g(W1Y).

Algorithm 1 FRC via the gradient descent algorithm

1: input: data Y, the number of hidden units h, maximal
training epochs Tm, regularization parameters α, β, γ,
learning rate ε, and approximation accuracy ε.

2: initialize: random initialization W1, and t = 1.
3: compute Z? by Z? =

(
YT Y + αI

)−1
YT Y.

4: while t < Tm and not converged do
5: compute H by H = g(W1Y);
6: update W2 by (9);
7: update W1 by W1 = W1 − ε

∂LW1,W2

∂W1
, where ∂LW1,W2

∂W1

is defined in (10);
8: check the condition: ‖Z? −W2g(W1Y)‖2F/m < ε.
9: t = t+ 1;

10: end while
11: return solutions W1 and W2.

Clearly, this subproblem is easily solved by a ridge regression
[Hoerl and Kennard, 2000].

Updating W1 and W2: W1 and W2 are calculated by
minimizing L with respect to W1 and W2, when Z is fixed.
In general, the Frobenius norm is used to prevent the over-
fitting of weights in neural networks. So, by adding two
regularization terms2 ‖W1‖2F and ‖W2‖2F, the optimal solution
is to solve the following subproblem:

min
W1,W2

LW1,W2
= ‖Z? −W2g(W1Y)‖2F +

γ(‖W1‖2F + ‖W2‖2F), (8)

where γ is a regularization parameter. The gradient descent
algorithm is used to learn W1 and W2. Once the weight
W1 is fixed, H = tanh(W1Y) is also determined uniquely.
Then, solving W2 can be formulated as a convex optimization
problem ‖Z? −W2H‖2F, which has a closed-form solution:

W2 = (HHT + γI)−1H (Z?)
T
. (9)

By using a gradient descent (GD) algorithm [Li et al., 2015;
Li et al., 2016] to minimize the the least squares objective in
(8), deriving the gradient of W1 obtains

∂LW1,W2

∂W1
=2X

[
(1−H ◦H)

T ◦(
W2WT

2 H−W2Z?
)T ]

+ γW1, (10)

where ◦ denotes element-wise multiplication, 1 is an identical
matrix, and 1−H◦H is the gradient of H = tanh(W1Y). The
complete optimization procedure of FRC is summarized in
Algorithm 1, which includes the details of updating gradients
and the convergence conditions.

Time Complexity and Convergence Analysis. The com-
putational bottlenecks of FRC lies in the matrix inversion in
step 3, of which the maximum complexity is O(m3). Con-
sidering the cost of the gradient descent algorithm in steps

2In order to easy understand our main idea, we do not add the reg-
ularization into the main objective function (4) as this regularization
is a common trick in neural networks.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2140



Algorithm 2 Regression Coding Clustering.

1: input: large-scale data X with k subspaces ;
2: select Y from X;
3: solve W1 and W2 by FRC in Algorithm 1;
4: compute ZX by Z = W2g(W1X);
5: apply LSC to segment X into k subspaces by ZX;
6: output: segmentation of the data: X1,X2, · · · ,Xk.

Table 1: Computational complexities of the coding methods (SSC,
LRR and LSR), and our FRC.

Mehtods training time coding time

FRC (ours) O(m3 + Tm(m3+ O(dhn + hmn)
dhm + hm2))

SSC [Elhamifar and Vidal, 2013] O(0) O(t1(d
2n2 + dn3))

LRR [Liu et al., 2013] O(0) O(t2(d
2n + n3))

LSR [Lu et al., 2012] O(0) O(n3)
n:] of samples; d:] of dimensionality of sample; m:] of the selected samples; h:]
of hidden units of non-linear function; t1, t2, Tm:] of the number of iterations in
l1 solver, rank-minimizer, training the non-linear function;O(0): no training time.

4-10 and the number of iterations needed to converge, the over-
all computational complexity of FRC is O(m3 + Tm(m3 +
dhm+hm2))), where L ≤ 10 in this paper. The complexities
of FRC and the coding methods (e.g. SSC, LRR, and LSR) are
summarized in Table 1. In fact, the training complexity can be
ignored due to n� m. So, our coding complexity O(mn) is
linear in terms of n. Thus, our method is easily scalable for
computing the codes in large-scale datasets. When n = m,
we can directly use LSR to obtain the codes.

The theoretical convergence of FRC is difficultly guaranteed
because the gradient descent (back-propagation, BP) algorithm
cannot be proved to converge [Haykin, 2009]. Fortunately, BP
have been widely used in many applications as they empirical-
ly converges well in general [Haykin, 2009]. The convergence
is reached when the change in objective function is below a
user-defined threshold ε = 10−4.

3.3 Clustering.
Our RCC procedure summarized in Algorithm 2 is available
for both large and small datasets. To large datasets (e.g. M-
NIST, and JCNORB), we select a small data Y ∈ Rd×m from
X ∈ Rd×n to train the weights W1 and W2. After training
W1 and W2 by FRC, the codes ZX of X can be fast computed
by f(X; {W1,W2}) in (2). We cluster ZX by employing LSC
[Cai and Chen, 2015] to obtain the final results.

To small datasets (e.g. Extend-YaleB and AR), we select
all data points X as Y. Similar to the SSC method, spectral
clustering is applied on the affinity matrix C = |ZX|+ |ZT

X | to
segment the data into k subspaces by NCuts [Shi and Malik,
2000]. Clearly, it cannot segment the large-scale datasets.

3.4 Theoretical Analysis.
To solve the LSSC problem, FRC trains the function (2) to
approximate the codes learned by (5). In this subsection, we
show an approximation condition and a grouping effect to
verify that FRC is fit for large-scale subspace clustering.

Approximate the subspace representations by FRC. A
sufficient condition is to show that FRC can effectively ap-
proximate the subspace representations.

Table 2: Databases.
Data set # samples Dimension # classes

Extend-YaleB 2,414 32,256 38
AR 1,400 19,800 100

MNIST 70,000 784 10
JCNORB 349,920 2,048 6

Theorem 13. Assume a large-scale set of data points X
drawn from k independent subspaces {Si}ki=1 with ri bases,
and a small data points Y drawn from the large data points X,
where rank(X) = rank(Y) = r. For any U drawn from X, if
U belongs to the neighbourhood of Y with radius ρ > 0, that
is, U ∈ {P ∈ X|‖P− Y‖2F < ρ}, and

∂f(Y; θ)/∂Y = Y†, (11)

then we have ‖C? − Z‖2F ≤ o (ρ), where Y† is the pseudoin-
verse of Y, C? is the code of U learned by (5), Z = f(U; θ),
f(·; θ) is a projective function (i.e. (2)), and θ is trained by
the FRC problem (3).

Remark 3: The condition (11) is easily satisfied because
f(·; θ) is learned from the FRC problem (3). Hence, the projec-
tive codes can approximate to the subspace representations by
a first-order accuracy as long as U drawn from X is belonging
to the neighbourhood of Y.

Grouping effect. The grouping effect means that the cor-
related data has the approximately equal coefficients, which
implies these coefficients are easy to construct the similarity
graph to divide the data for LSSC. We prove that FRC exhibits
this grouping effect, which is stated as following:

Theorem 2. Given a data vector x ∈ Rd selected from
large-scale data X, a dictionary Y ∈ Rd×m and two pa-
rameters α, β. Assume each data point of Y is normalized
and x ∈ U, where U ∈ {P ∈ X|‖P − Y‖2F < ρ}. Let
z = [z1, · · · , zm] = f(x; θ) be the non-linear code, where
θ is trained by the FRC problem (3). If the condition (11) is
satisfied, then we have√

(zi − zj)2 ≤
√

2(1− ν)‖x‖2/α+ 2
√
o (ρ). (12)

where ν = yTi yj is the dictionary correlation.
Remark 4: Theorem 2 shows that the solution is dependent

correlation. If yi and yj are highly correlated (that is ν = 1),
then the difference between the coefficient of yi and yj tends
to be 0 due to the higher-order infinitesimal o (ρ). Hence,
naturally, they will be grouped in the same cluster.

4 Experiments
In this section we evaluate our approach on four databases:
Extended-YaleB4, AR5, MNIST6, and JCNORB7 in Table 2.

Datasets: Extended-YaleB contains 2,414 frontal face im-
ages of 38 people. There are about 64 images for each person.
AR consists of over 4,000 color images of 126 people. Each

3The proofs of Theorems 1 and 2 are provided in
https://www.researchgate.net/profile/Jun Li7

4http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
5http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
6http://yann.lecun.com/exdb/mnist/
7http://www.cs.nyu.edu/ ylclab/data/norb-v1.0/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2141



(A)

A
C
C

 (%
)

N
M
I (

%
)

C
on
ve
rg
en
ce

(B) (C)

5 2 1 0.5 0.1 0.01 0.001
0.2

0.4

0.6

0.8



 

 

LSR(EYaleB)
FRC(EYaleB)
LSR(AR)
FRC(AR)

5 2 1 0.5 0.1 0.01 0.001
0.2

0.4

0.6

0.8



 

 

LSR(EYaleB)
FRC(EYaleB)
LSR(AR)
FRC(AR)

2 4 6 8 10
0

0.01

0.02

0.03

0.04

t

 

 
AR
EYaleB

Figure 2: (A) Clustering accuracy (ACC) with different parameter α on AR and Extend-YaleB. (B) Normalized mutual information (NMI)
with different parameter α on AR and Extend-YaleB. (C) Convergence of FRC on AR and Extended YaleB.

person has 26 face images taken during two sessions. We
use a subset of the dataset consisting of 2,600 images from
50 male subjects and 50 female subjects. For computational
efficiency, the original images of Extended-YaleB and AR
were cropped and normalized to 48× 42 and 55× 40 pixels,
respectively. Moreover, the features are reduced to 167 and
114 dimensions by PCA. MNIST has 70,000 examples with
28× 28 pixel greyscale images of handwritten digits 0-9. JC-
NORB contains images of 50 toys belonging to a background
and 5 generic categories: four-legged animals, human figures,
airplanes, trucks, and cars. There are 349,920 training and
testing examples with six classes. The original 2 × 96 × 96
images were subsampled and scaled to 2 × 32 × 32. The
features are reduced to 500 dimensions by PCA.

4.1 Baselines and Evaluation Criterion.
The proposed clustering framework, RCC, employs LSC-K
to segment the data points, based on the codes computed by
our FRC. To evaluate the clustering performance of RCC, we
compare our method with the classical coding (CCod) meth-
ods, the fast coding (FCod) methods, the large-scale spectral
clustering (LSSpC) methods, and the sampling, clustering and
classification (S-C-C), as well as the k-means [Cai, 2011].
Specifically, they are described as follow:

• CCod respectively uses LSR [Lu et al., 2012], SSC [El-
hamifar and Vidal, 2013], and LRR [Liu et al., 2013]
to calculate the codes of data samples, which are used
to construct an affinity matrix, and employs NCuts to
segment the data samples.

• FCod is a related method, which also learns a projective
function to approximate the (sparse) codes, such as, De-
noising autoencoders (DAE)8 [Vincent et al., 2010] and
predictive sparse decomposition (PSD) [Kavukcuoglu
et al., 2008; Gregor and LeCun, 2010]. In reality, LSR
with a small dictionary [Lu et al., 2012] becomes a linear
coding function shown in Remark 2. To compare these
models, they are used to fast calculate the codes in our
RCC framework, and also employ LSC-K [Cai and Chen,
2015] to cluster the data points.

• LSSpC directly uses the data points to construct an simi-
larity matrix and segment the data points. Nyström [Chen
et al., 2011] finds an approximate eigendecomposition of

8We use the codes from http-
s://github.com/kyunghyuncho/deepmat.

Table 3: ACC (%) and NMI (%) on Extend-YaleB and AR.
Extended-YaleB AR
ACC NMI ACC NMI

RCC (ours) 66.5±1.74 70.5±0.79 82.8±0.80 91.1±0.36
DAE [Vincent et al., 2010] 59.6±1.25 61.1±0.73 62.3±0.95 70.2±0.59

PSD [Gregor and LeCun, 2010] 72.2±0.87 73.0±0.61 80.8±1.05 90.5±0.44
LSR [Lu et al., 2012] 67.0±1.17 70.7±0.51 83.1±1.21 91.3±0.28

SSC [Elhamifar and Vidal, 2013] 76.5±1.22 78.4±0.35 78.1±1.72 88.3±0.95
LRR [Liu et al., 2013] 67.2±0.98 70.4±0.55 82.0±1.16 91.3±0.51

LSR-R [Cai and Chen, 2015] 43.4±2.08 55.2±0.87 33.9±1.02 62.0±0.49
LSR-K [Cai and Chen, 2015] 43.4±1.21 54.5±0.63 34.4±0.72 62.5±0.67
Nyström [Chen et al., 2011] 24.5±1.16 44.2±1.02 61.8±2.40 83.0±0.90

NyströmO [Chen et al., 2011] 21.5±0.98 41.4±1.05 57.6±2.20 79.8±1.22
k-means [Cai, 2011] 8.6±0.55 10.4±0.66 28.0±0.98 58.2±0.51

the similarity matrix, and NyströmO [Chen et al., 2011]
is constrained in the orthogonal eigenvectors. LSR-R
[Cai and Chen, 2015] randomly selects a few samples
as the landmarks to compute the similarity matrix, while
LSR-K [Cai and Chen, 2015] uses k-means to select the
landmarks.
• S-C-C follows a strategy: sampling, clustering and clas-

sification. Specifically, select+SSC (selSSC) and selec-
t+LRR (selLRR) [Wang et al., 2014] respectively use
SSC and LRR to cluster the sampling data, and learn a
linear classifier to segment the rest data, while SLSR,
SSSC and SLRR [Peng et al., 2016] respectively cluster
the sampling data based on LSR, SSC and LRR, and use
SRC or CRC to classify the rest data.

The clustering quality is measured by Clustering Accuracy
(ACC) and Normalized Mutual Information (NMI) [Cai and
Chen, 2015] between the produced clusters and the ground
truth categories. ACC and NMI both range from 0 to 1, where
1 indicates perfect matching with the true subspace distribu-
tion, whereas 0 indicates totally mismatch. To obtain reliable
results, each experiment is repeated 10 times, and the final
results are reported by the mean and standard deviation of
ACC and NMI.

In our FRC, there are three parameters ε, α, and β. The
learning rate ε, as a typical parameter in neural networks, is
set to 0.0001 in all experiments. Fig. 2 (A) and (B) show
ACC and NMI with different α on AR and Extend-YaleB, and
the best results is shown in α = 0.1. We set α = 25 and
250 respectively for MNIST and JCNORB to obtain the best
results. Due to the limited space, we do not show the varying
results with different α for these two datasets. The parameter
β does not affect FRC as it is solved by minimizing L without
the last term of (6). In all experiments, the number of hidden
units h is set to 1000, the parameter γ is set to 0.0001, tanh

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2142



Table 4: Inference time (second) comparison between RCC and CCod
on Extend-YaleB and AR.

Extend-YaleB AR

RCC (ours) training coding training coding
23 0.4 49 0.2

LSR [Lu et al., 2012] 20 48
SSC [Elhamifar and Vidal, 2013] 56 72

LRR [Liu et al., 2013] 41 63

Table 5: All clustering times (second) compared RCC with S-C-C on
MNIST, and JCNORB.

MNIST JCNORB
RCC (ours) 30 262

SLSR [Peng et al., 2016] 541 1365
SLRR [Peng et al., 2016] 638 2617
SSSC [Peng et al., 2016] 613 2603

selSSC [Wang et al., 2014] 469 3629
selLRR [Wang et al., 2014] 1569 4489

is voted as the activation function, and the number of training
epochs Tm is less than 10.

4.2 Comparison on Small-scale Datasets.
We verify that our approach (RCC) efficiently approximate the
clustering results of the classical coding methods. When all
samples are selected as training samples in Extended-YaleB
and AR, the results are reported in Table 3. We observe that
the performance of RCC is comparable to LSR as RCC trains a
non-linear function to effectively approximate LSR. Moreover,
RCC has a similar clustering result to other CCod methods,
such as SSC and LRR. In addition, Table 3 also shows that
CCod is much better than k-means and LSSpC (such as LSR-
R, LSR-K, Nyström and NyströmO). Clearly, this observation
drives us to apply the coding methods to fast compute the
codes of the data samples for LSSC.

Table 4 shows that the coding time of RCC are 0.4, and
0.2 second in Extended-YaleB and AR, which are 50 times
faster than LSR, SSC and LRR at least. Hence, RCC is able
to apply for large-scale datasets when we randomly select the
training samples. Moreover, Fig. 2 (C) does not only show
the approximation accuracy between the codes and the non-
linear function, but also illustrates that Algorithm 1 converges
quickly. Although RCC spends some time to train the function,
it can infer the codes in a rapid way.

4.3 Comparison on Large-scale Datasets.
It is worth noting that the CCod methods (LSR, LRR and SSC)
have difficultly (or impossibly) to infer the codes in large-
scale datasets with over 10,000 samples. Thus, we develop
FRC to fast compute the codes for large-scale clustering. For
large-scale datasets, 2000 and 2400 samples are respectively
selected as the training data in MNIST, and JCNORB. The
clustering times and results are reported in Table 5 and Table
6, respectively. We have the following observations:

Table 6 shows that our proposed RCC outperforms all the
baseline methods in the scenario of large-scale datasets. Com-
pared to the S-C-C methods (for example, SLSR, SLRR, SSS-
C, selSSC, and selLRR), FRC has significantly better cluster-
ing performance, where we achieve at least 18.2% (MNIST),
and 7.4% (JCNORB) improvement by ACC; and also reaches
15.2% (MNIST), and 8.8% (JCNORB) improvement by NMI.

Table 6: Clustering accuracy (ACC) (%) and normalized mutual
information (NMI) (%) on MNIST and JCNORB.

MNIST (2000) JCNORB (2400)
ACC NMI ACC NMI

FCod
RCC (ours) 73.6±3.79 69.6±2.15 32.6±1.00 15.4±0.66

LSR [Lu et al., 2012] 69.8±2.35 67.3±1.03 31.5±0.68 14.5±1.56
PSD [Gregor and LeCun, 2010] 50.1±1.79 43.7±0.38 29.3±2.85 9.7±3.06

DAE [Vincent et al., 2010] 68.9±3.71 68.6±1.67 26.6±2.59 9.4±3.28
S-C-C

SLSR [Peng et al., 2016] 54.1±1.56 48.1±0.87 25.4±0.67 6.6±0.41
SLRR [Peng et al., 2016] 50.0±3.87 49.1±2.27 22.9±0.22 5.0±0.27
SSSC [Peng et al., 2016] 54.9±1.89 49.9±1.15 20.9±0.46 2.0±0.37

selSSC [Wang et al., 2014] 55.2±1.63 54.4±2.19 20.6±0.67 2.1±0.69
selLRR [Wang et al., 2014] 55.4±5.11 52.1±2.50 23.4±0.30 4.1±0.18

LSSpC
LSR-R [Cai and Chen, 2015] 58.5±4.19 55.8±2.65 24.4±0.32 6.5±2.20
LSR-K [Cai and Chen, 2015] 68.3±4.99 67.7±2.29 24.6±0.36 7.8±0.40
Nyström [Chen et al., 2011] 52.7±1.46 47.4±0.38 25.6±0.29 7.8±0.23
NyströmO[Chen et al., 2011] 52.1±3.48 46.9±1.49 27.3±0.72 8.6±0.30

k-means [Cai, 2011] 55.3±0.06 52.6±0.19 23.1±0.00 5.3±0.00

The fundamental reason is that the linear classifier cannot han-
dle the complex image data in the S-C-C methods. In contrast,
our method trains the non-linear function to fast capture the
excellent codes of the complex image data, and then perform
LSC-K. Compared to LSSpC without coding (such as LSR-R,
LSR-K, Nyström, and NyströmO), RCC still shows higher
ACC and NMI as RCC can learn the excellent codes of the
original data points. In addition, RCC is better and faster than
DAE and PSD in the FCod methods. Besides, RCC is also
better than LSR as RCC trains a non-linear function.

The overall clustering time consists of the training, coding,
and clustering times. RCC is faster than S-C-C since RCC
can very fast infer the codes by only computing a non-linear
function. As shown in Table 5, RCC is round five times faster
than SLSR, SLRR, SSSC, selLRR, and selSSC. On the other
hand, although the LSSpC methods are faster than RCC, their
clustering results perform worse than RCC. In fact, the time
complexities of RCC is comparable to LSSpC as the number
of data points increases. Moreover, RCC has a faster training
time than other FCod methods.

5 Conclusion
To effectively solve the LSSC problem, we presented an ef-
ficient RCC framework: sampling, FRC and LSC. Firstly, a
small dataset is (randomly) sampled from the large-scale data
points due to the effectiveness of sampling. Secondly, based on
fast self-expressiveness property, we proposed an FRC model
to train a non-linear function from the sampled data for fast
computing the codes of all the data points. Thirdly, the LSC
method was employed to cluster the codes computed by the
non-linear function. Besides, we theoretically proved that the
non-linear function can approximate the codes learned from
LSR by a first-order accuracy, and have a grouping effect that
tends to group highly correlated data together. Extensive ex-
perimental results verified that our method can be successfully
applied into the LSSC problem.

Acknowledgments
This work is supported in part by the NSF IIS award 1651902,
ONR Young Investigator Award N00014-14-1-0484, and U.S.
Army Research Office Young Investigator Award W911NF-
14-1-0218.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2143



References
[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and Pascal

Vincent. Representation learning: A review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, Aug.
2013.

[Cai and Chen, 2015] Deng Cai and Xinlei Chen. Large scale spec-
tral clustering via landmark-based sparse representation. IEEE
Trans. on Cybernetics, 45(8):1669–1680, 2015.

[Cai, 2011] Deng Cai. Litekmeans: the fastest mat-
lab implementation of kmeans. In Available at:
http://www.zjucadcg.cn/dengcai/Data/Clustering.html, 2011.

[Chen and Cai, 2011] Xinlei Chen and Deng Cai. Large scale spec-
tral clustering with landmark-based representation. In Proc. of the
AAAI Conf. on Artif. Intell., pages 313–318, 2011.

[Chen et al., 2011] Wen-Yen Chen, Yangqiu Song, Hongjie Bai,
Chih-Jen Lin, and Edward Y. Chang. Parallel spectral clustering
in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell.,
33(3):568–586, 2011.

[Elhamifar and Vidal, 2013] Ehsan Elhamifar and Rene Vidal. S-
parse subspace clustering: Algorithm, theory, and applications.
IEEE Trans. Pattern Anal. Mach. Intell., 35:2765–2781, 2013.

[Fowlkes et al., 2004] Charless Fowlkes, Serge Belongie, Fan
Chung, and Jitendra Malik. Spectral grouping using the nystrom
method. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):214–225,
2004.

[Gregor and LeCun, 2010] Karol Gregor and Yann LeCun. Learning
fast approximations of sparse coding. In Proc. of Int. Conf. Mach.
Learn., pages 399–406, 2010.

[Haykin, 2009] Simon Haykin. In Neural Networks and Learning
Machines. Pearson Education Inc., 2009.

[Hoerl and Kennard, 2000] Arthur E. Hoerl and Robert W. Kennard.
Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 42(1):80–86, 2000.

[Kavukcuoglu et al., 2008] K. Kavukcuoglu, M. Ranzato, and Y. Le-
Cun. Fast inference in sparse coding algorithms with applications
to object recognition. In CBLL-TR-2008-12-01, 2008.

[Lee et al., 2015] Minsik Lee, Jieun Lee, Hyeogjin Lee, and Nojun
Kwak. Membership representation for detecting block-diagonal
structure in low-rank or sparse subspace clustering. In Proc. of
IEEE Conf. Comput. Vis. Pattern Recognit., pages 1648–1656,
2015.

[Li and Vidal, 2015] Chun-Guang Li and Rene Vidal. Structured
sparse subspace clustering: A unified optimization framework.
In Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pages
277–286, 2015.

[Li et al., 2015] Jun Li, Heyou Chang, and Jian Yang. Sparse deep
stacking network for image classification. In Proc. of the AAAI
Conf. on Artif. Intell., pages 3804–3810, 2015.

[Li et al., 2016] Jun Li, Yu Kong, Handong Zhao, Jian Yang, and
Yun Fu. Learning fast low-rank projection for image classification.
IEEE Trans. Image Process., 25(10):4803–4814, 2016.

[Li et al., 2017a] Jun Li, Yu Kong, and Yun Fu. Sparse subspace
clustering by learning approximation `0 codes. In Proc. of the
AAAI Conf. on Artif. Intell., pages 2189–2195, 2017.

[Li et al., 2017b] Jun Li, Tong Zhang, Wei Luo, Jian Yang, Xiaotong
Yuan, and Jian Zhang. Sparseness analysis in the pertraining of
deep neural networks. IEEE Trans. Neural Netw. Learn. Syst.,
28(6):1425–1438, 2017.

[Liu et al., 2007] Ting Liu, Charles Rosenberg, and Henry A. Row-
ley. Clustering billions of images with large scale nearest neighbor
search. In Proc. of IEEE Workshop on App. of Comput. Vis., 2007.

[Liu et al., 2013] Guangcan Liu, Zhouchen Lin, Shuicheng Yan,
Ju Sun, Yong Yu, and Yi Ma. Robust recovery of subspace struc-
tures by low-rank representation. IEEE Trans. Pattern Anal. Mach.
Intell., 35:171–184, 2013.

[Lu et al., 2012] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu,
De-Shuang Huang, and Shuicheng Yan. Robust and efficient
subspace segmentation via least squares regression. In Proc. of
Euro. Conf. Comput. Vis., pages 347–360, 2012.

[Nie et al., 2011] Feiping Nie, Zinan Zeng, Ivor W. Tsang, Dong
Xu, and Changshui Zhang. Spectral embedded clustering: A
framework for in-sample and out-of-sample spectral clustering.
IEEE Trans. on Neural Netw., 22(11):1796–1808, 2011.

[Peng et al., 2016] Xi Peng, Huajin Tang, Lei Zhang, Yi Zhang,
and Shijie Xiao. A unified framework for representation-based
subspace clustering of out-of-sample and large-scale data. IEEE
Trans. Neural Netw. Learn. Syst., 27(12):2499–2512, 2016.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Normalized
cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 22(8):888–905, 2000.

[Talwalkar et al., 2013] Ameet Talwalkar, Lester Mackey, Yadong
Mu, Shih-Fu Chang, and Michael I. Jordan. Distributed low-rank
subspace segmentation. In Proc. of IEEE Int. Conf. Comput. Vis.,
pages 3543–3550, 2013.

[Vidal, 2011] Rene Vidal. Subspace clustering. IEEE Signal Pro-
cessing Magazine, 28(3):52–68, 2011.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Isabelle La-
joie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. J. Mach. Learn. Res.,
11:3371–3408, 2010.

[Wang et al., 2014] Shusen Wang, Bojun Tu, Congfu Xu, and Zhi-
hua Zhang. Exact subspace clustering in linear time. In Proc. of
the AAAI Conf. on Artif. Intell., pages 2113–2120, 2014.

[Xiao et al., 2014] Shijie Xiao, Mingkui Tan, and Dong Xu. Weight-
ed block-sparse low rank representation for face clustering in
videos. In Proc. of Euro. Conf. Comput. Vis., pages 123–138,
2014.

[Yan et al., 2009] Donghui Yan, Ling Huang, and Michael I. Jordan.
fast approximate spectral clustering. In Proc. of ACM SIGKDD
Int. Conf. Knowl. Dis. and Data Min., pages 907–916, 2009.

[Yin et al., 2016] Ming Yin, Junbin Gao, and Zhouchen Lin. Lapla-
cian regularized low-rank representation and its applications.
IEEE Trans. Pattern Anal. Mach. Intell., 38(3):504–517, 2016.

[Zhang et al., 2015] Changqing Zhang, Huazhu Fu, Si Liu, Guang-
can Liu, and Xiaochun Cao. Low-rank tensor constrained mul-
tiview subspace clustering. In Proc. of IEEE Int. Conf. Comput.
Vis., pages 1582–1590, 2015.

[Zhao and Fu, 2015a] Handong Zhao and Yun Fu. Dual-regularized
multi-view outlier detection. In Proc. of of Int. Joint Conf. on Artif.
Intell., pages 4077–4083, 2015.

[Zhao and Fu, 2015b] Handong Zhao and Yun Fu. Semantic single
video segmentation with robust graph representation. In Proc. of
of Int. Joint Conf. on Artif. Intell., pages 2219–2226, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2144


